光伏逆变器静态效率低怎么调整(光伏逆变器怎么调节输出功率)
本文目录一览:
光伏发电站的逆变器怎么设置
太阳能光伏发电并网系统中的并网逆变器设置方式分为:集中式、主从式、分布式和组串式。
1、集中式
集中式并网方式适合于安装朝向相同且规格相同的太阳能电池方阵,在电气设计时,采用单台逆变器实现集中并网发电方案如图1所示。
对于大型并网光伏系统,如果太阳能电池方阵安装的朝向、倾角和阴影等情况基本相同,通常采用大型的集中式三相逆变器。
该方式的主要优点是:整体结构中使用光伏并网逆变器较少,安装施工较简单;使用的集中式逆变器功率大,效率较高,通常大型集中式逆变器的效率比分布式逆变器要高大约2%左右,对于9.3MWp光伏发达系统而言,因为使用的逆变器台数较少,初始成本比较低;并网接入点较少,输出电能质量较高。该方式的主要缺点是一旦并网逆变器故障,将造成大面积的太阳能光伏发电系统停用。
集中逆变一般用于大型光伏发电站(10kW)的系统中,很多并行的光伏电池组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP来改善所产出电能的质量,使它非常接近于正弦波电流。
最大特点是系统的功率高,成本低。但受光伏电池组串匹配和部分遮影的影响,导致整个光伏系统的效率不高。同时整个光伏系统的发电可靠性受某一光伏电池单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制,以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高的效率。
在SolarMax(索瑞·麦克)集中逆变器上,可以附加一个光伏电池阵列的接口箱,对每一串的光伏电池组串进行监控,如其中有一组光伏电池组串工作不正常,系统将会把这一信息传到远程控制器上,同时可以通过远程控制将这一串光伏电池停止工作,从而不会因为一串光伏电池串的故障而降低和影响整个光伏系统的工作和能量产出。
2、主从式
对于大型的光伏发电系统可采用主从结构,主从结构其实也是集中式的一种,该结构的主要特点是采用2~3个集中式逆变器,总功率被几个逆变器均分。在辐射较低的时候,只有一个逆变器工作,以提高逆变器在太阳能电池方阵输出低功率时候的工作效率;在太阳辐射升高,太阳能电池方阵输出功率增加到超过一台逆变器的容量时,另一台逆变器自动投入运行。
为了保证逆变器的运行时间均等,主从逆变器可以自动的轮换主从的配置。主从式并网发电原理如图2所示。主从结构的初始成本会比较高,但可提高光伏发电系统逆变器运行时的效率,对于大型的光伏系统,效率的提高能够产生较大的经济效益。
3、分布式
分布式并网发电方式适合于在安装不同朝向或不同规格的太阳能电池方阵,在电气设计时,可将同一朝向且规格相同的太阳能电池方阵通过单台逆变器集中并网发电,大型的分布式系统主要是针对太阳能电池方阵朝向、倾角和太阳阴影不尽相同的情况使用的。
分布式系统将相同朝向,倾角以及无阴影的光伏电池组件串成一串,由一串或者几串构成一个太阳能电池子方阵,安装一台并网逆变器与之匹配。分布式并网发电原理如图3所示。这种情况下可以省略汇线盒,降低成本;还可以对并网光伏发电系统进行分片的维修,减少维修时的发电损失。
分布式并网发电的主要缺点是:对于大中型的上百千瓦甚至兆瓦级的光伏发电系统,需要使用多台并网逆变器,初始的逆变器成本可能会比较高;因为使用的逆变器台数较多,逆变器的交流侧和公用电网的接入点也较多,需要在光伏发电系统的交流侧将逆变器的输出并行连接,对电网质量有一定影响。
4、组串式
光伏并网组串逆变器是将每个光伏电池组件与一个逆变器相连,同时每个光伏电池组件有一个单独的最大功率峰值跟踪,这样光伏电池组件与逆变器的配合更好。组串逆变器已成为现在国际市场上最流行的逆变器,组串逆变器是基于模块化概念基础上的,每个光伏组串(1kW~5kW)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网。许多大型光伏阀电厂使用组串逆变器,优点是不受光伏电池组串间差异和遮影的影响。
在组串间引入“主-从”概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏电池组串联系在一起,让其中一个或几个工作,从而产出更多的电能。最新的概念为几个逆变器相互组成一个“团队”来代替“主-从”概念,使得系统的可靠性又进了一步。目前,无变压器式组串逆变器已占了主导地位。
多组串逆变是取了集中逆变和组串逆变的优点,避免了其缺点,可应用于几千瓦的光伏发电站。在多组串逆变器中,包含了不同的单独功率峰值跟踪DC/DC变换器,DC/DC变换器的输出通过一个普通的逆变器转换成交流电与电网并联。由于是在交流处并联,这就增加了交流侧的连线的复杂性,维护困难。
另需要解决的是怎样更有效的与电网并网,简单的办法是直接通过普通的交流开关进行并网,这样就可以减少成本和设备的安装,但往往各地的电网的安全标准也许不允许这样做。另一和安全有关的因素是是否需要使用隔离变压器(高频或低频),或允许使用无变压器式的逆变器。
光伏组串的不同额定值(如:不同的额定功率、每组串不同的组件数、组件的不同的生产厂家等)、不同的尺寸或不同技术的光伏组件、不同方向的组串(如:东、南和西)、不同的倾角或遮影,都可以被连在一个共同的逆变器上,同时每一组串都工作在它们各自的最大功率峰值上。同时,直流电缆的长度减少、将组串间的遮影影响和由于组串间的差异而引起的损失减到最小。
逆变器功率降低是怎么回事
理上频率越高,效率也越高,对某些元器件的要求也相应提高,比如高频磁芯,还有快速恢复二极管的参数如果不符合要求,效率相反会降低的。另外频率太高了,还要考虑到谐振问题。这些都会直接影响效率的。10KHz-200KHz
逆变器的 的功能是将直流电转换为交流电,为“逆向”的整流过程,因此称为“逆变”。光伏阵列所发的电能为直流电能,然而许多负载需要交流电能,如变压器和电机等。 直流供电系统有很大的局限性,不便于变换电压,负载应用范围也有限。除特殊用电负荷外,均需要使用逆变器将直流电变换为交流电。逆变器除能将直流电能变换 为交流电能外,还具有自动稳压的功能,可以改善风光互补发电系统的供电质量,在联网型光伏发电系统也需要使用具有并网功能的交流逆变器。逆变器种类很多, 根据逆变器线路逆变原理的不同,有自激振荡型逆变器、阶梯波叠加逆变器和脉宽调制(PWM)逆变器等。根据逆变器主回路拓扑结构不同,可分为半桥结构、全 桥结构、推挽结构等。
逆变器发电量很不稳定,那应该怎样设置光伏逆变器呢?
古瑞瓦特在光伏群英汇上分享过一个案例,天气情况差不多但是发电量每日相差较大,忽高忽低,且有时会报故障,要求派人过去查找原因。售后人员立马通过OSS系统查找到这台逆变器,分析数据很快发现是逆变器时间不对导致发电量统计错误,而故障原因是当地市电电压波动过大,超出范围导致。售后人员在OSS系统上使用远程设置的功能更改了这台逆变器的时间,把市电电压上限值放宽,问题立刻得到解决。
安装光伏电站后功率因数降低怎么办?
安装光伏电站后,特别是分布式光伏电站,本地负载的有功功率很大一部分都从光伏电站而来,这样从系统吸收的有功功率降低。在无功功率不变的情况下,功率因数自然降低了。由于功率因数的降低,造成用户被供电公司检查,甚至罚款。这是大多数安装分布式光伏的用户困扰的事情。
至于如何解决,目前很多用户采用增加无功补偿模式,这样做会增加用户投资,因为一次设备投资较高,另外故障点也会增加。最可靠的方式,应该是利用光伏逆变器原有的无功调节功能,这样既满足了用户需求,也节省了投资。
保定特创电力科技有限公司生产的Tc-3063无功功率控制装置,是目前国内最好的无功功率控制器。
光伏无功功率控制器/光伏功率因数监控装置TC-3063主要功能简介
在系统运行中,TC-3063光伏无功功率监控装置不断监视母线电压和测量电流,具有对异常电流和电压报警功能,设置有无功功率控制功能:
(1)装置上电后,自动判别无功功率的功率因数,当功率因数过低时,自动启动无功功率调节功能
(2)功率因数过低报警,并启动调节光伏逆变器无功功率输出
(3)过负荷报警
(4)过电压报警
(5)低电压报警
(6)PT断线报警
以上功能均有控制字投入或退出,方便用户整定。